Skip to main content

MSc in Financial Engineering

The largest financial engineering program in the world is 100% online and tuition-free for everyone.

Degree: Master of Science
Length: 2 years

Our MSc is where programming and data science meet the future of finance.

Skills taught include Regression, Matplotlib, Cointegration, Risk management, Recursion, Alphas, Scipy, Numpy, Neural networks, and vector machines

This field is on the rise as financial innovation across the globe drives demand for analytics and data science training.

From evaluating statistics to econometric modeling, our students learn advanced skills that can be applied across industries. Graduates are well positioned for careers in securities, banking, and financial management as well as in general manufacturing and service firms that increasingly rely on the expertise of quantitative analysts.

“Hiring skilled students who come from institutions like WorldQuant University is a business imperative.”
Susan Wolford,
Managing Director and Head of Technology & Businesses Services Group, BMO Capital Markets

What You’ll Learn

Designed by industry experts, WorldQuant University’s program integrates mathematical, statistical, and computer science tools with finance theory in a completely online and collaborative setting. Graduates are positioned to excel in today’s highly collaborative, fast-paced, professional environments.

The two-year program consists of nine graduate-level courses and a Capstone Course during which students complete a culminating project. The courses are sequentially taught and build on one another. Taking one course at a time allows you to earn your degree without disrupting your life.

All courses are delivered online and focus on applied projects.

Program Outcomes

Upon completion of the program, you will be able to:

Course Descriptions

The MSc in Financial Engineering is comprised of nine graduate-level courses as well as a Capstone course. Each of the nine courses consists of seven one-week-long modules with one-week breaks between courses. The final Capstone Course during which students complete a culminating Capstone project is 10 weeks long.

Course 1

MScFE 560: Financial Markets

The Financial Markets course serves as an introduction to the field of Financial Engineering. It covers foundational topics including: The History of Financial Markets and Insurance; Market Regulation; Money Markets; and Bond Markets and Trading. The aim of the course is to expand students’ understanding of financial markets, enable them to complete an analysis of market events, and provide students with the skills to perform valuations of financial instruments. The course also incorporates discussions on High Frequency Trading and the Dodd-Frank Act.

Course 2

MScFE 610: Econometrics

In this course, students apply statistical techniques to the analysis of econometric data. The course starts with an introduction to the R statistical programming languages that students will use to build econometric models including multiple linear regression models, time series models, and stochastic volatility models. Students learn to develop programs using the R language, solve statistical problems, and understand value distributions in modelling extreme portfolio and basic algorithmic trading strategies. The course concludes with a review on applied econometrics in finance and algorithmic trading.

Course 3

MScFE 620: Discrete-time Stochastic Processes

This course introduces derivative pricing in discrete time, beginning with measure-theoretic probability and stochastic processes with an emphasis on discrete-time martingales. The course continues by focusing on concepts of Trading in Discrete-time, The Binomial Model, and pricing and hedging both European and American Options. These concepts are then applied to the pricing of derivatives in discrete time as a prelude to discussions on interest rate and credit risk modeling. By the end of the course, students will have an enhanced comprehension of Discrete-time Stochastic Processes including: understanding the language of measure-theoretic probability, defining trading strategies in discrete time, and creating replicating portfolios.

Course 4

MScFE 622: Continuous-time Stochastic Processes

This course covers key stochastic processes such as Brownian Motion, Stochastic Calculus including the Ito integral, the Black-Scholes Model, and Levy processes. The course expands the student knowledge on quadratic variations, proving martingale property, deriving and proving Ito-Doeblin, and understanding the first and second fundamental theorems of finance. In the last module of the course, some of the most important interest rate models are addressed in detail.

Course 5

MScFE 630: Computational Finance

This course provides a comprehensive introduction to computational finance with a key focus on Monte Carlo Methods in Python, Option Pricing, and Risk Management. The Monte Carlo Methods for Options Pricing considers the Pricing of American and Exotic options, whereas the Monte Carlo Methods for risk management considers CVaR and VaR Simulations. The course also delves into Fourier transforms and Local Volatility for option pricing and offers an overview of Pricing Interest Rate Options such as HJM, SABR and LIBOR.

Course 6

MScFE 640: Portfolio Theory and Asset Pricing

The course introduces students to single-period asset pricing including the MVP theory, CAPM, SML and CML. The course also covers multi-period asset pricing (Multi-period portfolio theory, CAPM and APT), Active Frontiers, Bayesian Portfolio Theory and Indexation. Students are introduced to Stochastic Dynamic Control, which they will use to understand and solve HJB equations. Transaction Costs, Incentives, Trading and Market Frictions are also addressed at the end of the course.

Course 7

MScFE 650: Machine Learning in Finance

This course covers the basic concepts of machine learning in finance. Students are introduced to principles and applications of statistical learning and machine learning. During the course, students examine feasibility of learning, measures of fit and lift, and a number of learning paradigms such as logistic regression, neural networks, support vector machines, boosting, decision trees, and both supervised and unsupervised learning. At the end of the course students are also introduced to the latest trends in machine learning in finance.

Course 8

MScFE 660: Case Studies in Risk Management

This course uses case studies of historical financial crises to expound on the need for risk management in the modern business environment. Each module highlights the major risks faced by business and society including credit, market, operational, strategic, reputation and enterprise-wide management risk. Drawing on actual data, students perform analyses and apply the methods and processes they have learned in previous courses. At the end of the course, students are given an opportunity to consolidate their knowledge by reflecting on and evaluating the ethics and regulations associated with risk management.

Course 9

MScFE 670: Data Feeds and Technology

In this course, case studies are used as a method of understanding and analyzing various data sets. The course begins with an introduction to R for Data Science, building on the Econometrics and Computational Finance courses. Following this, it explores C# for finance programs, before incorporating this with Excel for sophisticated financial data management and simulation. The course also covers distributed ledger technologies, with particular attention to blockchains and their application in cryptocurrencies and smart contracts. At the end of this course, students will be empowered to engage in distributed ledger powered trading, and will have the knowledge to launch their own trading tokens.

Course 10

MScFE 690: Capstone Course

The Capstone Course is designed to put the students’ knowledge of financial engineering to the test. Students practically apply their understanding of the program content by accomplishing project milestones from developing a problem statement, identifying the required technology to find a solution to the problem, submitting multiple drafts for peer review and instructor feedback, and finalizing and presenting their fully-developed project. The goal of the Capstone Course is to ensure that students have met the program outcomes and are able to apply their knowledge and skills to real-world scenarios.

How Can I Use My Degree?

Financial engineers typically pursue professional careers in quantitative research, quantitative development, quantitative trading, algorithmic trading, and portfolio management for financial institutions.

Others may choose to apply their skills to public policy work, conducting research, testing hypotheses, and developing financial policies for governments and think tanks.

From healthcare and drug discovery to supply chain optimization and security, there’s a growing demand across industries for financial engineers. Learning highly transferable skills makes it possible to easily move between opportunities.

Learn more about careers

Where Are You Located?

Wherever you are.

We believe location should not be a barrier to education. Students use our web platform to complete their entire degree online from anywhere in the world, at any hour of the day.

Wherever you are, join a community of diverse students and educators at the forefront of financial engineering.

Who Should Apply?

Our students are career-driven, computer-savvy quantitative thinkers. They have fully completed a bachelor’s degree and are interested in a future in financial engineering.

Students come from a wide range of countries and have diverse backgrounds. They want to advance their career and seek life-changing education. They are persistent, resilient, and committed to meeting the demands of our rigorous program and to mastering advanced concepts. They understand the value of collaborative work and value sharing knowledge as much as acquiring it.

Students are expected to commit 25 hours per week between lecture videos, assignments, group projects, and individual study.

What Else is Required

All students at WorldQuant University need access to a computer, webcam, and a high-speed internet connection in order to participate in the online courses. Detailed information about WorldQuant University, the program, requirements for admission, academic policies, and other considerations are available in the WorldQuant University Catalog.

You can view and download a copy here.

When Do Classes Start?

The program will be offered quarterly, so there are four start dates every year.

2021 Start Dates

Start Date Appl. Deadline
January 5Jan 5 Closed
April 6Apr 6 March 23Mar 23
July 6Jul 6 June 22Jun 22
October 5Oct 5 September 21Sep 21

Get Started Today

I’m Ready

Frequently Asked Questions

Learn more about financial engineering, data science, the University, our degree programs, and the admissions process.


Apply Online

Ready to get started? We will walk you through the application process and make sure you have everything you need.